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Abstract In this paper we present an optimized explicit Runge-Kutta method, which
is based on a method of Fehlberg with six stages and fifth algebraic order and has
improved characteristics of the phase-lag error. We measure the efficiency of the new
method in comparison to other numerical methods, through the integration of the
Schrödinger equation and three other initial value problems.

Keywords Numerical solution · Initial value problems (IVPs) · Explicit methods ·
Runge-Kutta methods · Schrödinger equation

1 Introduction

We investigate the solution of first order differential equations of the form

y′(x) = f (x, y), y(x0) = y0, y′(x0) = y′
0. (1)

This type of ODE (1) appears in many areas of astronomy, astrophysics, quantum
mechanics, quantum chemistry, celestial mechanics, electronics physical chemistry
and chemical physics, (see [7–14]).
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An important problem that falls into this category is the radial time-independent
Schrödinger equation

y′′(x) =
(

l(l + 1)

x2 + V (x) − E

)
y(x) (2)

where l(l+1)

x2 is the centrifugal potential, V (x) is the potential, E is the energy and

W (x) = l(l+1)

x2 + V (x) is the effective potential. It is valid that lim
x→∞V (x) = 0 and

therefore lim
x→∞W (x) = 0. Many methods have been developed for the numerical

approximation of the above problem (for more details see [1–49]).
We will study the case of E > 0. We divide [0,∞) into subintervals [ai , bi ] so that

W (x) is a constant with value
_

Wi . After this the problem (2) can be expressed by the
approximation

y′′
i = (

_
W − E) yi , whose solution is

yi (x) = Ai exp
(√ _

W − E x
)

+ Bi exp
(
−

√ _
W − E x

)
,

Ai , Bi ∈ R.

(3)

In this paper we construct an optimized explicit Runge-Kutta method based on a
method of Fehlberg with 6 stages and 5th algebraic order and with constant coefficients
and improved efficiency for initial value problems (IVPs) with oscillatory solution.

The paper has the following form: In Sect. 2 we present the basic theory of explicit
Runge-Kutta methods, the algebraic conditions that the method must satisfy and the
phase-lag analysis of the Runge-Kutta methods. In Sect. 3 we show how the new
method is constructed. In Sect. 4 we present the Schrödinger equation during the
resonance problem and other three IVPs that are used for the integration. We also
present the methods being compared and finally in Sect. 5 we note some interesting
conclusions.

2 Basic theory

2.1 Explicit Runge-Kutta methods

What is presented in this subsection is the general form of an explicit Runge-Kutta
method. Furthermore, the computation of the approximate value of yn+1(x) in Problem
1, when yn(x) is known, is given from the following procedure:

yn+1 = yn + h
s∑

i=1

bi ki

ki = f

⎛
⎝xn + ci h, yn + h

i−1∑
j=1

ai j k j

⎞
⎠ , i = 1, . . . , s (4)
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The upper procedure is used for the computation of the solution of Problem 1, so we
have to convert this second order ODE into a system of first order ODEs. For exam-
ple, for the case of problem (2) we have f (x, y(x)) = (W (x) − E) y(x). In this way
problem (2) becomes:

z′(x) = (W (x) − E) y(x)

y′(x) = z(x)
(5)

An explicit Runge-Kutta method can also be presented using the Butcher table below:

0
c2 a21
c3 a31 a32
...

...
...

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

(6)

Coefficients c1, c2, …, cs always satisfy the equation:

ci =
s∑

j=1

ai j , i = 1, . . . , s (7)

Definition 1 [4] A Runge-Kutta method has algebraic order p, when the method’s
Taylor series expansion agrees with the theoretical solution Taylor series expansion
in the p first terms:

y(n)(x) = y(n)
n (x), n = 1, 2, . . . , p.

A Runge-Kutta method must satisfy a number of equations, in order to have a certain
algebraic order. These equations are shown during the production of the methods.

2.2 Algebraic conditions

The following equations must be satisfied so that the method’s algebraic order is 5:
1st Algebraic Order (1 equation)

s∑
i=1

bi = 1 (8)

2nd Algebraic Order (2 equations in total)

s∑
i=1

bi ci = 1

2
(9)
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3rd Algebraic Order (4 equations in total)

s∑
i=1

bi c
2
i = 1

3
(10)

s∑
i, j=1

bi ai j c j = 1

6
(11)

4th Algebraic Order (8 equations in total)

s∑
i=1

bi c
3
i = 1

4
(12)

s∑
i, j,k=1

bi ai j aikck = 1

8
(13)

s∑
i, j=1

bi ai j c
2
j = 1

12
(14)

s∑
i, j,k=1

bi ai j a jkck = 1

24
(15)

5th Algebraic Order (17 equations in total)

s∑
i=1

bi c
4
i = 1

5
(16)

s∑
i, j,k=1

bi c
2
i ai j c j = 1

10
(17)

s∑
i, j=1

bi ci ai j c
2
j = 1

15
(18)

s∑
i, j,k=1

bi ci ai j a jkck = 1

30
(19)

s∑
i=1

bi ai j c
3
j = 1

20
(20)

s∑
i, j,k=1

bi ai j c j a jkck = 1

40
(21)
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s∑
i, j,k=1

bi ai j a jkc2
k = 1

60
(22)

s∑
i, j=1

bi ai j a jkaklcl = 1

120
(23)

s∑
i, j,k=1

bi ai j c j aikck = 1

20
(24)

2.3 Phase-lag analysis of the Runge-Kutta methods

The phase-lag analysis of the Runge-Kutta methods is based on the test equation

y′ = i w y, i = √−1, w real (25)

Application of this method to the scalar test equation (25) produces the numerical
solution:

yn+1 = an∗ yn, a∗ = As(v
2) + ivBs(v

2), where v = w h and

As(v
2) = 1 − t2v

2 + t4v
4 + t6v

6 + · · ·
Bs(v

2) = 1 − t3v
2 + t5v

4 + t7v
6 + · · · (26)

are polynomials in v2, completely defined by Runge-Kutta parameters ai, j , bi and ci ,
i = 1, . . . , s, j = 1, . . . , i − 1. yn+1 denotes the approximation to y(xn+1), where
xn+1 = xn + h, n = 0, 1, . . ..

A comparison of equation (26) with the solution of equation (25) leads to the fol-
lowing definition of the dispersion or phase-error or phase-lag:

Definition 2 [3] In the explicit s-stage Runge-Kutta method, presented in (6), the
quantity

t (v) = v − arg[a∗(v)],

is called the phase-lag. If t (v) = O(vq+1), then the method is said to be of phase-lag
order q.

We have the following theorem:

Theorem 1 [3] For the Runge-Kutta method given by (6) and equation (25) we have
the following formula for the direct calculation of the phase-lag order q and the
phase-lag constant c:

tan(v) − v

[
Bs(v

2)

As(v2)

]
= cvq+1 + O(vq+3)
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3 Construction of the new method

We will consider, during the construction of the method, the computation of the phase-
lag in respect to v. We consider a 6-Stage 5th algebraic order explicit Runge-Kutta
method developed by Fehlberg and shown below:

0

1
6

1
6

4
15

4
75

16
75

2
3

5
6 − 8

3
5
2

4
5 − 8

5
144
25 −4 16

25

1 361
320 − 18

5
407
128 − 11

80
55

128

1 31
384 0 1125

2816
9

32
125
768

5
66

(27)

The order of the phase-lag of the above method is 6, and is given by the formula below

Phase-Lag = 1

24
tan (v) v4 − 1

540
tan (v) v6 + tan (v) − 1

120
v5

+1

6
v3 − 1

2
tan (v) v2 − v (28)

and its Taylor expansion is

Phase-Lag Taylor = − 1

1512
v7 − 1

5670
v9 − 29

415800
v11

− 49

1737450
v13 − 87557

7662154500
v15 (29)

3.1 Construction of the new optimized method

In order to construct the new optimized method, we compute the phase-lag of the new
method,which depends on v and a43 as given by the following relation

Phase-Lag = 1

24
tan (v) v4 − 1

1350
tan (v) a43 v6 + tan (v) − 1

120
v5

+1

6
v3 − 1

2
tan(v) v2 − v (30)
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The Taylor series of the phase-lag in respect to v follows

Phase-Lag Taylor =
(

1

840
− 1

1350
a43

)
v7 +

(
1

2268
− 1

4050
a43

)
v9

+
(

221

1247400
− 1

10125
a43

)
v11

+
(

349

4864860
− 17

425250
a43

)
v13

+
(

74251

2554051500
− 31

1913625
a43

)
v15 (31)

The coefficients of the RK-Fehlberg 5th new depend on a43.

0

1
6

1
6

4
15

4
75

16
75

2
3 − 2

3 + 3
5 a43

4
3 − 8

5 a43 a43

4
5

68
25 − 216

125 a43 − 144
25 + 576

125 a43
16
5 − 72

25 a43
16
25

1 − 827
320 + 297

200 a43
63
10 − 99

25 a43
385
128 + 99

40 a43 − 11
80

55
128

1 31
384 0 1125

2816
9

32
125
768

5
66

(32)

and one equation must hold in order to achieve zero factor of the v7 term. The equation
is given below

1

840
− 1

1350
a43 = 0,

and it nullifies the coefficient of the leading term of the Taylor series expansion of the
phase-lag. So we get a43 = 45

28 and the RK-Fehlberg 5th new becomes
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0

1
6

1
6

4
15

4
75

16
75

2
3

25
84 − 26

21
45
28

4
5 − 2

35
288
175 − 10

7
16
25

1 − 443
2240 − 9

140
869
896 − 11

80
55

128

1 31
384 0 1125

2816
9

32
125
768

5
66

(33)

In this way we achieve to increase the order of the phase-lag of RK-Fehlberg 5th
method from 6th order to 8th order. For the new method we have evaluated the remain-
ders of equations (8–24) and they are nullified, which means that the algebraic order
is preserved.

4 Numerical results

4.1 The problems

Three well-known IVPs from the literature as well as the Schrödinger Equation were
chosen to test the efficiency of the constructed method.

4.1.1 Schrödinger equation-resonance problem

The efficiency of the new constructed methods will be measured through the integration
of problem (2) with l = 0 at the interval [0, 15] using the well known Woods-Saxon
potential

V (x) = u0

1 + q
+ u1 q

(1 + q)2 , q = exp

(
x − x0

a

)
, where (34)

u0 = −50, a = 0.6, x0 = 7 and u1 = −u0

a

and with boundary condition y(0) = 0.
The potential V (x) decays more quickly than l (l+1)

x2 , so for large x (asymptotic
region) the Schrödinger equation (2) becomes

y′′(x) =
(

l(l + 1)

x2 − E

)
y(x) (35)
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The last equation has two linearly independent solutions k x jl(k x) and k x nl(k x),
where jl and nl are the spherical Bessel and Neumann functions. When x → ∞ the
solution takes the asymptotic form

y(x) ≈ A k x jl(k x) − B k x nl(k x)

≈ D[sin(k x − π l/2) + tan(δl) cos (k x − π l/2)], (36)

where δl is called scattering phase shift and it is given by the following expression:

tan (δl) = y(xi ) S(xi+1) − y(xi+1) S(xi )

y(xi+1) C(xi ) − y(xi ) C(xi+1)
, (37)

where S(x) = k x jl(k x), C(x) = k x nl(k x) and xi < xi+1 and both belong to
the asymptotic region. Given the energy we approximate the phase shift, the accurate
value of which is π/2 for the above problem.

We will use four different values for the energy: (1) 53.588872, (2) 163.215341, (3)
341.495874 and (4) 989.701916. As for the frequency w we will use the suggestion
of Ixaru and Rizea [1]:

w =
{√

E + 50 x ∈ [0, 6.5]√
E x ∈ [6.5, 15]. (38)

We present the accuracy of the tested methods expressed by the − log10(error at
the end point) when comparing the phase shift to the actual value π/2 versus the
log10(total function evaluations). The function evaluations per step are equal to the
number of stages of the method multiplied by two that is the dimension of the vector
of the functions integrated for the resonance problem (y(x) and z(x)). In Fig. 1 we use
E = 53.588872, in Fig. 2 E = 163.215341, in Fig. 3 E = 341.495874 and in Fig. 4
we use E = 989.701916.

4.1.2 Nonlinear problem

y′′ = 100y + sin(y)

with

y(0) = 0

y′(0) = 1, t ∈ [0, 20 π ] (39)

The theoretical solution is not known, but we use y(20 π) = 3.92823991 × 10−4

(see [2] ).
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Fig. 1 Efficiency for the Schrödinger equation with E = 53.588872

Fig. 2 Efficiency for the Schrödinger equation with E = 163.215341

4.1.3 Inhomogeneous problem

y′′ = −100 y + 99 sin (y)

with

y(0) = 1

y′(0) = 11, t ∈ [0, 1000 π ] (40)

Theoretical solution: y(t) = sin (t) + sin (10 t) + cos (10 t).
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Fig. 3 Efficiency for the Schrödinger equation with E = 341.495874

Fig. 4 Efficiency for the Schrödinger equation with E = 989.701916

4.1.4 Duffing problem

y′′ = −y − y3 + 0.002 cos (1.01 t)

with

y(0) = 0.200426728067

y′(0) = 0, t ∈ [0, 1000π ]
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Theoretical solution: y(t) = 0.200179477536 cos (1.01 t) + 2.46946143 10−4

cos (3.03 t) + 3.04014 10−7 cos (5.05 t) + 3.74 10−10 cos (7.07 t) + . . .

4.2 The methods

In order to measure the efficiency of the method constructed in this paper we compare
it to some already known methods, presenting the results of the best.

1. – RK-Fehlberg 5th: an explicit Runge-Kutta method with 6 stages and 5th alge-
braic order and 6th order of phase-lag [4].

– RK-Fehlberg 5th new: a new explicit optimized Runge-Kutta method with 6
stages, 5th algebraic order constructed in this paper.

The following methods with 4th algebraic order have also been tested and they are
presented:

2. – Gill Classical method: an explicit Runge-Kutta with 4 stages [4].
– Classical RK 4th: the classical standard Runge-Kutta method [4].
– RK-Fehlberg 4th: an explicit Runge-Kutta with 5 stages, 4th algebraic order

and 4th order of phase-lag [4].
– RK-Vyver 4th: an explicit, trigonometrically fitted Runge-Kutta method with 4

stages developed by Vyver [6].
– England II: an explicit Runge-Kutta with 6 stages, 5th algebraic order and 6th

order of phase-lag [4].
– RK-Franco: an explicit Runge-Kutta with 6 stages and variable coefficients

developed by Franco [5].
– RKAS1: an explicit Runge-Kutta with 6 stages, 5th algebraic order and 6th

phase-lag order developed by Anastassi and Simos [15].
– RKAS2: an explicit Runge-Kutta with 6 stages, 5th algebraic order and 8th

phase-lag order developed by Anastassi and Simos [15].

4.3 The Results

In Figs. 1, 2, 3 and 4 we present the efficiency of the methods for the Schrödinger
equation for four different eigenenergies. We can notice that the new method, pre-
sented in this paper, RK-Fehlberg 5th new, has at least the same efficiency or higher
than RKAS2,while has about two decimal digits higher accuracy than RK-Fehlberg
5th, which is the corresponding classical method of the new developed method. The
latter has one digit higher accuracy than England II. Next in order of efficiency are
RK-Vyver 4th, Gill Classical, RK Classical 4th and RKAS1.

In Fig. 5 we can see the efficiency of all the methods compared during the integra-
tion of the Nonlinear problem. We observe that the new method RK-Fehlberg 5th
new is the most efficient of all other methods. Compared to the classical method RK-
Fehlberg 5th, it has about two decimal digits higher accuracy. It is important to notice
that the new method has at least the same efficiency or higher than RKAS2 method
and much more efficient from RK-Franco and RK-Vyver 4th, despite the fact that
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Fig. 5 Efficiency for the nonlinear problem

Fig. 6 Efficiency for the inhomogeneous problem

the latter methods have variable coefficients. In order of efficiency RKAS1 method
is third, next are RK-Fehlberg 5th and England II. RK-Franco RK-Fehlberg 4th
follow, and last the RK Classical 4th, Gill Classical, and RK-Vyver 4th.

In Fig. 6 we can see the efficiency of the methods for the Inhomogeneous equation.
We can see that RK-Fehlberg 5th new, is more efficient than RK-Fehlberg 5th, has
at least the same efficiency with RKAS2 and has about one decimal digit higher than
England II, RKAS1, and RK-Fehlberg 4th, while the latter is also more efficient
than RK Classical 4th, Gill Classical, and RK-Vyver 4th.
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Fig. 7 Efficiency for the duffing problem

In Fig. 7 we can see the efficiency of the methods for the Duffing’s equation. We
can observe that the methods in descending order of efficiency are: RK-Fehlberg 5th
new, RKAS2, RK-Fehlberg 5th, RKAS1, RK-Franco, RK-Fehlberg 4th, England
II, RK Classical 4th, RK-Vyver 4th, Gill Classical.

5 Conclusions

A new optimized explicit Runge-Kutta Fehlberg method of fifth algebraic order is
produced in this paper. This method is based on the Runge-Kutta Fehlberg method
(27) and has increased order of phase-lag in comparison to the corresponding classical
method, while the algebraic order is preserved. The results show the efficiency of the
new constructed method, while it is compared to the corresponding classical method
and other methods from the literature. It is remarkable that the Runge-Kutta Fehlberg
5th New is the most efficient in all problems tested, and particularly than the corre-
sponding classical method: Runge-Kutta Fehlberg 5th method. This happens due to
the optimization of the constant coefficients of the Runge-Kutta Fehlberg 5th method.
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